

MD-175

High Stability GNSS (GPS, GLONASS, Galileo) **Disciplined Oscillator Module**

Cectron Oscillators

The MD-175 is a Microchip GNSS disciplined module. It is a fully integrated GNSS disciplined oscillator module in a compact surface mount 40 x 50 mm footprint. The module has an embedded 72 channel receiver that is GPS, GLONASS and Galileo compatible and provides a sinewave or CMOS 10 MHz, and HCMOS 1 pps output. An onboard precision OCXO provides stabilities in the unlocked mode enabling extremely low holdover. The module operates from -40 °C to +85 °C.

Features

- Embedded GNSS Receiver GPS, GLONASS, Galileo
- 1pps LVCMOS output signal
- 10MHz sinewave or CMOS RF output
- Other RF output frequencies avaliable
- Serial Communications Interface
- NMEA 0183 V4.1
- Adaptive Aging correction during holdover
- Barometric pressure correction
- Evaluation kit with software

Applications

- Radar Systems
- Digital Video Broadcast
- E911 Location Systems
- General Timing and Synchronization
- Military Radio
- Basestation Communications

Figure 1. Functional Block Diagram

Summary Specifications

Hold Over Performance ¹									
Hold Over Time	old Over Time 10 min			1 hr		1 hr		24hr	
Hold Over	Δ T =			$\Delta T = \Delta T =$		Δ T =			
Temperature Change		2 °C			2 °C 10 °C			2 °C	
Model					Maximum Accumulated Hold Over in us				
MD-175		0.05		0.24		0.4		15E7 option: 1.5 40E7 option: 4.0	
		Summa	ry Perform	ance Cha	racteristics	1	1		1
Model	Warm Up Time (min- utes)	Aging / day (ppb) ¹	Tempe Stab (pp	rature ility b)	Accuracy to UTC (+/-1σ) (ns)²	Frequency Accuracy ³	Warm up Power @ 25 °C (W)	Steady State Power @ 25 °C (W)	Voltage (V)
MD-175	7	0.06	0.	4	10	<1E-12	4.5	2.0	5.0 V analog/ 3.3V digital
			Phase No	oise/ ADE	V				
Model	10 Hz	: 100	Hz 1 kHz	10 kHz	100 kHz	ADEV τ=1s	ADEV τ=10s	Conc	dition
MD-175	-125	-14	0 -145	-145	-145	5e-12	1E-11	at 10	MHz
1 0.8 0.6 0.4 0.2 0									
0	4	8	3	12		16	2()	24
			Time	e (Ho	urs)				

Specifications Internal Receiver Characteristics Parameter Condition Timing Type Mobile, Self-Survey, or Fixed Position Number of channels 72 Frequency bands GPS L1C/A GLONASS L1OF Galileo E1B/C QZSS L1C/A SBAS L1C/A Disabled by default Tracking capability 36 SVs -167 dBm Tracking (GPS & GLONASS) Sensitivity -148 dBm Cold Acquisition (GPS & GLONASS) -160 dBm Reacquisition (GPS & GLONASS) Position Accuracy 2.5 meters CEP GPS & GLONASS, static, -130 dBm, > 6 SVs TTFF 25 seconds Cold Start (GPS & GLONASS) **GPS** Antenna Condition Parameter Min Typical Мах Units 5.0 Antenna Input Voltage⁴ 2.6 5.5 $V_{\rm DC}$ Antenna Current 20 100 mΑ **RF Output Waveform Characteristics** Waveform Sinewave 50 Load Ω dBm **Output Power** +3 +7 Harmonics -30 dBc -80 Spurious dBc LVCMOS Waveform Load 15 рF High-level output voltage (V_{OH}) VDC 15 pF ll 10k Ohm 2.4 3.4 Low-level output voltage (V_{Ω}) 0.0 0.4 VDC 15 pF ll 10k Ohm Duty Cycle 45 55 % 15 pF II 10k Ohm **1pps Output Characteristics Parameter** Min **Typical** Max Units Condition Waveform LVCMOS High-level output voltage (V_{OH}) 3.0 3.4 V_{DC} > 100 Ohms Low-level output voltage (V_{ol}) 0.0 0.4 V_{DC} > 100 Ohms Pulse Width 10ns to 99.999ms user programmable **External 1pps Reference Input Characteristics** Parameter Min Typical Max Units Condition Waveform LVCMOS, TTL High-level input voltage (V_{iii}) 2.4 3.5 VDC 15 pFII10kOhm Low-level input voltage (V₁) 0.0 0.4 VDC 15 pFll10kOhm Pulse Width 10 us

Specifications

Lock Status Indicator							
Parameter	Min	Typical	Мах	Units	Condition		
Module Locked	90		100	%V _{cc}			
Module Not Locked	0		20	%V _{cc}			
Module Hardware OK Indicator							
Module Hardware OK	90		100	%Vcc			
Module Hardware Failure	0		20	%Vcc			
Module Hardware Reset							
Reset Module	0		0.5	VDC	10 kOhm internal pullup		
Serial Communications Interface							
Rx high-level input voltage (V _{IH})	2.8			V _{DC}			
Rx low-level input voltage (V _{IL})	-0.5	0.0	0.5	VDC			
Tx high-level output voltage (V _{OH})	3.15	3.3	3.4	V _{DC}			
Tx low-level output voltage (V _{OL})	-0.2	0.0	0.2	V _{DC}			
Update rate		1		Hz			
Communications Protocol VSIP2/NMEA 0183 V4.1				See VSIP2 for Full Details			
	Supply Voltage						
Supply voltage (Vcc)	+4.75	+5.0	+5.25	V _{DC}			
Supply voltage (Digital Vcc)	+3.0	+3.3	+3.4	V _{DC}			
		Absolute I	Maximum	Ratings			
Supply voltage (Vcc)			6	V _{DC}			
Supply voltage (Digital Vcc)			3.5	V _{DC}			
Dc voltage on any I/O pin			3.9	V _{DC}			
Output load	100			Ohms			
AC ripple			50	mVpk-pk	10Hz to 1MHz		
Environmental Conditions							
Parameter	Min	Typical	Мах	Units	Condition		
Operating temperature	-40		+85	°C			
Humidity @ 40°C			90	%			
Storage Temperature	-55		+125	°C			
Physical Characteristics							
Weight			43	g			
g-sensitivity		1		ppb/g	10 to 1000 Hz		

Environmental

Environmental Compliance				
Parameter	Conditions			
Mechanical shock	MIL-STD-202, Method 213 condition B			
Mechanical vibration	MIL-STD-202, Method 204 condition A			
Resistance to solvents	MIL-STD-202, Method 215			

Handling Precautions

Although ESD protection circuitry has been designed into the MD-175, proper precautions should be taken when handling and mounting. Microchip employs a human body model (HBM) and a charged-device model (CDM) for ESD susceptibility testing and design protection evaluation.

ESD Ratings					
Model	Minimum	Conditions			
Human body model	1500 V	MIL-STD-833, Method 3015			
Charged device model	1000 V	JEDEC, JESD22-C101			

Package Outline

DETAIL A SCALE 2.5 : 1

Pin Configuration

36 Pin I/O Connections				
Number	Name	Description/comment		
1	PPS_OUT	1 pps output		
2	REF_IN	Reference input		
3,5,7,20,26,36	D_GND	Digital Ground		
4	ANT_IN	Antenna		
6	VCC_ANT	Antenna Supply		
8,27	D_VCC	Digital 3.3V supply		
9,12,13,14,16,17,18,19	A_GND	Analog Ground		
10,11	A_VCC	Analog 5.0V supply		
15	RF_OUT	Sinewave or CMOS (see ordering code)		
21,22,29,32,33,34,35	N/C	Do not connect - leave floating		
23	RX_IN	Data in - internal pull up		
24	TX_OUT	data out		
25		Reserved - leave floating		
28	MOD_RST	Pull up - active low		
30	STATUS	pull down		
31	LOCK	pull down		

Available Models				
MD-1750-DAE-15E7-10M0000000	MD-1750-DAE-40E7-10M0000000			
MD-1750-DEE-15E7-10M0000000	MD-1750-DEE-40E7-10M0000000			

Notes

- 1) Holdover and aging performance is after 7 days of power-on time. Temperature and aging rates are when device is not locked. Performance measured in still air.
- After customer applies correct offset using cable delay command while locked, after 24 hours of locked operation
- 3) ADEV at τ =86400s while locked, after 24 hours of locked operation

4) Antenna supply pin at pin 21 is an input voltage from customer. The DC input voltage is coupled to the RF signal of the GPS signal on the module. The customer does not need to provide any additional blocking or coupling circuitry.

Contact Information

USA:

100 Watts Street Mt Holly Springs, PA 17065 Tel: 1.717.486.3411 Fax: 1.717.486.5920 Europe:

Landstrasse 74924 Neckarbischofsheim Germany Tel: +49 (0) 7268.801.0 Fax: +49 (0) 7268.801.281

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your reasonability to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATION OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATU-TORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING, BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFOR-MANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly, or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip and Vectron names and logos are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.