

# **ADQ32 Datasheet**



The ADQ32 is a high-end 12-bit dual-channel data acquisition board optimized for use in high-throughput scientific applications. The ADQ32 features:

- One and two analog input channels
- 5 and 2.5 GSPS per channel included
- 7 GByte/s sustained data transfer rate to GPU
- 7 GByte/s sustained data transfer rate to CPU
- Two external triggers
- General Purpose Input/Output (GPIO)
- Open FPGA for real-time signal processing

# **Ordering information**

- ADQ32 digitizer including firmware FWDAQ, order code ADQ32.
- ADQ32 digitizer with warranty extension to 5 years, order code ADQ32-W5Y.<sup>1</sup>
- Firmware development kit for FWDAQ, order code ADQ32-DEVDAQ.
- Analog bandwidth option 2.5 GHz (Standard is 1 GHz), order code ADQ32-BW2G5.
- Averaging firmware license, order code ADQ32-FWATD.

<sup>&</sup>lt;sup>1</sup> Included warranty is 3 years from the date the product is shipped by Teledyne SP Devices. The option extends the warranty to 5 years from the date the product is shipped by Teledyne SP Devices. Warranty extension must be ordered before included 3 years warranty is expired.



### 1 ADQ32 INTRODUCTION

#### 1.1 Features

- One and two analog input channels
- 5 and 2.5 GSPS sampling rate per channel
- 12 bits vertical resolution
- DC-coupled with 1 GHz bandwidth (optional 2.5 GHz)
- Programmable DC-offset
- Internal and external clock reference
- Internal and external sampling clock
- Clock reference output
- Internal and external triggers
- 8 Gbyte data memory
- 7 GByte/s sustained data streaming to CPU and GPU
- Data interface PCle Gen3 x8
- Averaging firmware FWATD

# 1.2 Applications

- Swept-Source Optical Coherence Tomography (SS-OCT)
- Time-of-flight Mass Spectrometry
- Distributed Optical Fiber Sensing
- LIDAR

## 1.3 Advantages

- A compact high-performance digitizer that optimize the system solution
- Real-time processing and high data throughput
- Teledyne SP Devices' design services are available for fast integration to reduce time-tomarket

# 1.4 System design optimization; open FPGA and streaming to CPU and GPU

High-performance data acquisition systems require high speed real-time analysis. ADQ32 offers a variety of options for efficient system design:

# **Streaming to GPU**

ADQ32 supports up to 7 GByte/s peer-to-peer streaming and streaming via pinned buffer to GPU. A GPU offers a powerful platform for implementing application-specific signal processing algorithms.

#### **Streaming to CPU**

ADQ32 supports up to 7 GByte/s to host PC. Implementing the application-specific algorithms in the CPU results in an efficient system.

## Open FPGA for real-time processing

ADQ32 offers an open FPGA for implementation of the application-specific computations in the FPGA. This gives the most compact system design. Firmware development kit is ordered separately.



#### 2 TECHNICAL DATA

Technical parameters are valid for ADQ32 operating with firmware FWDAQ. All parameters are typical unless otherwise noted.

Table 1 Analog input (front panel label A and B) standard bandwidth 1 GHz

| Parameter                   | Condition            | Min             | Typical | Max   | Unit      |
|-----------------------------|----------------------|-----------------|---------|-------|-----------|
| Basic parameters            |                      |                 |         |       |           |
| Number of channels          | 2 channels mode      |                 | 2       |       |           |
| Sampling rate per channel   | 2 channels mode      |                 | 2.5     |       | Gsample/s |
| Number of channels          | 1 channel mode       |                 | 1       |       |           |
| Sampling rate               | 1 channel mode       |                 | 5       |       | Gsample/s |
| Bandwidth -3dB              | Standard config.     |                 | 1       |       | GHz       |
| Input range                 |                      |                 | 0.5     |       | Vpp       |
| Input impedance             |                      |                 | 50      |       | Ω         |
| Coupling                    |                      |                 | DC      |       |           |
| Connector type              |                      |                 | SMA     |       |           |
| Programmable DC-offset      |                      |                 |         |       |           |
| DC-offset range             |                      | -0.25           |         | +0.25 | V         |
| Dynamic performance 2 chan  | nels mode            |                 |         |       | _         |
| Cross talk                  | < 1 GHz              |                 | -70     |       | dBFS      |
| Noise power density         | 0 to 1.25 GHz        |                 | -148    |       | dBFS/VHz  |
| SNR                         | 260 MHz, -1dBFS      |                 | 55      |       | dBc       |
| SFDR                        | 260 MHz, -1dBFS      |                 | 66      |       | dBc       |
| ENOB relative full scale    | 10 MHz, -1dBFS       |                 | 9       |       | bits      |
| ENOB relative full scale    | 260 MHz, -1dBFS      |                 | 8.9     |       | bits      |
| ENOB relative full scale    | 810 MHz, -1dBFS      |                 | 8.5     |       | bits      |
| Dynamic performance, 1 char | nels mode, no FIR    | filter          |         |       | _         |
| SNR                         | 260 MHz, -1dBFS      |                 | 54      |       | dBc       |
| SFDR                        | 260 MHz, -1dBFS      |                 | 65      |       | dBc       |
| ENOB relative full scale    | 10 MHz, -1dBFS       |                 | 8.9     |       | bits      |
| ENOB relative full scale    | 260 MHz, -1dBFS      |                 | 8.8     |       | bits      |
| ENOB relative full scale    | 810 MHz, -1dBFS      |                 | 8.5     |       | bits      |
| Dynamic performance, 1 chan | nels mode, FIR filte | er <sup>2</sup> |         |       |           |
| SNR                         | 260 MHz, -1dBFS      |                 | 57      |       | dBc       |
| ENOB relative full scale    | 10 MHz, -1dBFS       |                 | 9.2     |       | bits      |
| ENOB relative full scale    | 260 MHz, -1dBFS      |                 | 9.2     |       | bits      |
| ENOB relative full scale    | 810 MHz, -1dBFS      |                 | 9.1     |       | bits      |

<sup>&</sup>lt;sup>2</sup> Built-in user-programmable digital FIR filter; symmetrical, 17 taps. Filter coefficients used for this test are  $[57, 92, -279, 21, 704, -720, -1163, 4127, 10784] / 2^{14}$ .



Table 2 Analog input (front panel A and B) bandwidth option -BW2G5<sup>3</sup>

| Parameter                   | Condition             | Min                         | Typical | Max   | Unit      |
|-----------------------------|-----------------------|-----------------------------|---------|-------|-----------|
| Basic parameters            |                       |                             |         |       |           |
| Number of channels          | 2 channels mode       |                             | 2       |       |           |
| Sampling rate per channel   | 2 channels mode       |                             | 2.5     |       | Gsample/s |
| Number of channels          | 1 channel mode        |                             | 1       |       |           |
| Sampling rate               | 1 channel mode        |                             | 5       |       | Gsample/s |
| Bandwidth -3dB              | Option -BW2G5         |                             | 2.5     |       | GHz       |
| Input range                 |                       |                             | 0.5     |       | Vpp       |
| Input impedance             |                       |                             | 50      |       | Ω         |
| Coupling                    |                       |                             | DC      |       |           |
| Connector type              |                       |                             | SMA     |       |           |
| Programmable DC-offset      |                       |                             |         |       |           |
| DC-offset range             |                       | -0.25                       |         | +0.25 | V         |
| Dynamic performance 2 chan  | nels mode, option -   | BW2G5                       |         |       |           |
| Cross talk                  | < 1 GHz               |                             | -70     |       | dBFS      |
| Noise power density         | 0 to 1.25 GHz         |                             | -147    |       | dBFS/√Hz  |
| SNR                         | 260 MHz, -1dBFS       |                             | 54      |       | dBc       |
| SFDR                        | 260 MHz, -1dBFS       |                             | 63      |       | dBc       |
| ENOB relative full scale    | 10 MHz, -1dBFS        |                             | 8.8     |       | bits      |
| ENOB relative full scale    | 260 MHz, -1dBFS       |                             | 8.8     |       | bits      |
| ENOB relative full scale    | 810 MHz, -1dBFS       |                             | 8.6     |       | bits      |
| Dynamic performance, 2 char | nnels mode, FIR filte | er <sup>4</sup> , option -E | 3W2G5   |       |           |
| ENOB relative full scale    | 260 MHz, -1dBFS       | bits                        | 9.2     |       | bits      |
| Dynamic performance, 1 chai | nnel mode, no FIR fi  | lter, option                | -BW2G5  |       |           |
| Noise power density         | 0 to 2.5 GHz          |                             | -150    |       | dBFS/√Hz  |
| SNR                         | 260 MHz, -1dBFS       |                             | 54      |       | dBc       |
| SFDR                        | 260 MHz, -1dBFS       |                             | 65      |       | dBc       |
| ENOB relative full scale    | 10 MHz, -1dBFS        |                             | 8.8     |       | bits      |
| ENOB relative full scale    | 260 MHz, -1dBFS       |                             | 8.8     |       | bits      |
| ENOB relative full scale    | 1625MHz,-1dBFS        |                             | 8.3     |       | bits      |
| Dynamic performance, 1 char | nnel mode, FIR filter | r option -BV                | /2G5    |       |           |
| ENOB relative full scale    | 810 MHz, -1dBFS       |                             | 9.1     |       | bits      |

<sup>&</sup>lt;sup>3</sup> The analog bandwidth option -BW2G5 is factory installed and cannot be altered via software.

<sup>&</sup>lt;sup>4</sup> Built-in user-programmable digital FIR filter; symmetrical, 17 taps. Filter coefficients used for this test are  $[57, 92, -279, 21, 704, -720, -1163, 4127, 10784] / 2^{14}$ .



Table 3 Clock generator and front panel CLK connector.

| Parameter                    | Condition             | Min                 | Typical                | Max     | Unit |
|------------------------------|-----------------------|---------------------|------------------------|---------|------|
| Internal clock reference     |                       |                     |                        |         |      |
| Frequency                    |                       |                     | 10                     |         | MHz  |
| Accuracy                     |                       |                     | ±3                     |         | ppm  |
|                              |                       |                     | ±1/year                |         |      |
| Internal sampling clock gen  | erator <sup>5</sup>   |                     |                        |         |      |
| Frequency range 1            | 2 channels            | 2440                | 2500                   | 2500    | MHz  |
| Frequency range 2            | 2 channels            | 1840                |                        | 1970    | MHz  |
| Frequency range 1            | 1 channel             | 4880                | 5000                   | 5000    | MHz  |
| Frequency range 2            | 1 channel             | 3680                |                        | 3940    | MHz  |
| External clock reference in  | out (from front panel | CLK connecte        | or) <sup>6</sup>       |         |      |
| Frequency                    |                       | 1                   | 10                     | 500     | MHz  |
| Frequency <sup>7</sup>       | Jitter cleaner        | 10                  | 10                     | 500     | MHz  |
|                              | enabled               | -10 ppm             |                        | +10 ppm |      |
| Frequency                    | Delay line used       |                     | 10                     | 100     | MHz  |
| Delay line tuning range      |                       |                     | 500                    |         | ps   |
| Signal level                 |                       | 0.5                 |                        | 3.3     | V    |
| Input impedance              | AC                    |                     | 50                     |         | Ω    |
| Input impedance              | DC                    |                     | 10k                    |         | Ω    |
| Input impedance (high) 8     | AC                    |                     | 200                    |         | Ω    |
| Clock reference output (on   | front panel CLK conn  | ector) <sup>9</sup> |                        |         |      |
| Frequency                    |                       |                     | 10                     |         | MHz  |
| Signal level                 | Into 50-Ω load        |                     | 1.2                    |         | Vpp  |
| Output impedance             | AC                    |                     | 50                     |         | Ω    |
| Output impedance             | DC                    |                     | 10k                    |         | Ω    |
| External direct sampling clo | ock input (from front | panel CLK co        | nnector) <sup>10</sup> |         |      |
| Frequency 11                 |                       | 1000                | 2500                   | 2500    | MHz  |
| Signal level                 |                       | 0.5                 |                        | 3.3     | ppm  |
| Impedance                    | AC                    |                     | 50                     |         | Ω    |
| Impedance                    | DC                    |                     | 10k                    |         | Ω    |
| Physical connector label CL  | K                     |                     |                        |         |      |
| Connector type               |                       |                     | SMA                    |         |      |

<sup>&</sup>lt;sup>5</sup> The internal clock generator can generate frequencies in 2 different ranges.

<sup>&</sup>lt;sup>6</sup> Using a clock reference from an external source to synchronize the ADQ32 to the external source.

<sup>&</sup>lt;sup>7</sup> The jitter cleaner requires the reference frequency to be a multiple of 10 MHz within ± 10ppm.

<sup>&</sup>lt;sup>8</sup> Software-selectable high-impedance mode.

<sup>&</sup>lt;sup>9</sup> The internal clock reference of the ADQ32 is made available to synchronize external equipment.

<sup>&</sup>lt;sup>10</sup> Using an external clock while bypassing the internal clock generator.

<sup>&</sup>lt;sup>11</sup> In single-channel mode, the sampling frequency is 2 times the external clock frequency.



**Table 4 Front panel TRIG connector** 

| Parameter                       | Condition                            | Min  | Typical | Max    | Unit |
|---------------------------------|--------------------------------------|------|---------|--------|------|
| Connector type                  |                                      |      | SMA     |        |      |
| Used as input (trigger in or GF | PIO)                                 |      |         |        |      |
| Impedance                       | DC                                   |      | 50      |        | Ω    |
| Impedance (high) 12             | DC                                   |      | 500     |        | Ω    |
| Signal level                    | 50-Ω mode                            | -0.5 |         | 3.3    | V    |
| Adjustable threshold            | 50-Ω mode                            | 0    |         | 2.8    | V    |
| Signal level                    | High impedance                       | -0.5 |         | 5.5    | V    |
| Adjustable threshold            | High impedance                       | 0    |         | 2.3    | V    |
| Pulse repetition frequency      | As trigger                           |      |         | 10     | MHz  |
| Time resolution 13              | As trigger                           |      | 50      |        | ps   |
| Update rate <sup>13</sup>       | As GPIO                              |      |         | 156.25 | MHz  |
| Used as output (trigger out or  | Used as output (trigger out or GPIO) |      |         |        |      |
| Impedance                       | DC                                   |      | 50      |        | Ω    |
| Output level high VOH           | Into 50-Ω load                       | 1.8  |         |        | V    |
| Output level low VOL            | Into 50-Ω load                       |      |         | 0.1    | V    |
| Pulse repetition frequency      |                                      |      |         | 156.25 | MHz  |

Table 5 Front panel SYNC connector (sync is a trigger signal with limited timing resolution)

| Parameter                      | Condition      | Min  | Typical | Max    | Unit |
|--------------------------------|----------------|------|---------|--------|------|
| Connector type                 |                |      | SMA     |        |      |
| Used as input (sync in or GPIC | ))             |      |         |        |      |
| Impedance                      | DC             |      | 50      |        | Ω    |
| Impedance (high) 12            | DC             |      | 500     |        | Ω    |
| Signal range                   | 50-Ω mode      | -0.5 |         | 3.3    | V    |
| Adjustable threshold           | 50-Ω mode      | 0    |         | 2.8    | V    |
| Signal level                   | High impedance | -0.5 |         | 5.5    | V    |
| Adjustable threshold           | High impedance | 0    |         | 2.3    | V    |
| Pulse repetition frequency     | As trigger     |      |         | 10     | MHz  |
| Time resolution 13             | As trigger     |      | 3.2     |        | ns   |
| Update rate <sup>13</sup>      | As GPIO        |      |         | 156.25 | MHz  |
| Used as output (sync out or G  | PIO)           |      |         |        |      |
| Impedance                      | DC             |      | 50      |        | S    |
| Output level high VOH          | Into 50-Ω load | 1.8  |         |        | V    |
| Output level low VOL           | Into 50-Ω load |      |         | 0.1    | V    |
| Pulse repetition frequency     |                |      |         | 156.25 | MHz  |

<sup>&</sup>lt;sup>12</sup> Software-selectable high-impedance mode.

<sup>&</sup>lt;sup>13</sup> Timing properties are valid for 2.5 GSPS in 2 channel mode and 5 GSPS in 1 channel mode. Timing properties scale linearly with sampling frequency.



# **Table 6 Front panel GPIO connector**

| Parameter             | Condition      | Min | Typical | Max    | Unit |
|-----------------------|----------------|-----|---------|--------|------|
| Connector type        |                |     |         | SMA    |      |
| Used as input         |                |     |         |        |      |
| Impedance             |                |     | 50      |        | Ω    |
| Impedance (high) 12   |                |     | 10      |        | kΩ   |
| Input level high VIH  |                | 2   |         |        | V    |
| Input level low VIL   |                |     |         | 0.8    | V    |
| Update rate 13        |                |     |         | 156.25 | MHz  |
| Used as output        |                |     |         |        |      |
| Output Impedance      |                |     | 50      |        | Ω    |
| Output level high VOH | Into 50-Ω load | 1.5 |         |        | V    |
| Output level high VOH | No load        | 3.2 |         |        | V    |
| Output level low VOL  | Into 50-Ω load |     |         | 0.1    | V    |
| Output level low VOL  | No load        |     |         | 0.1    | V    |
| Update rate 13        |                |     |         | 156.25 | MHz  |

Table 7 Custom GPIO expansion. See section 10.

| Parameter                              | Value                                  |
|----------------------------------------|----------------------------------------|
| Connector type                         | 40-pin FFC/FPC connector, pitch 0.5 mm |
| Number of differential IO signals LVDS | 8                                      |
| Number of single-ended IO signals 3.3V | 5                                      |

**Table 8 Environment and mechanical parameters** 

| Parameter               | Condition     | Min                                                          | Typical | Max  | Unit |
|-------------------------|---------------|--------------------------------------------------------------|---------|------|------|
| Power and temperature   |               |                                                              |         |      |      |
| Power consumption 14 15 | FWDAQ         |                                                              | 30      |      | W    |
| Power supply            |               | 10.8                                                         | 12      | 13.2 | V    |
| Operating temperature   | At fan inlet  | 0                                                            |         | 45   | °C   |
| Size                    |               |                                                              |         |      |      |
| Width                   |               |                                                              | 1 slot  |      |      |
| Length                  |               |                                                              | 225.7   |      | mm   |
| Height                  |               |                                                              | 111.2   |      | mm   |
| Compliances             |               |                                                              |         |      |      |
| RoHS3                   |               | Yes                                                          |         |      |      |
| CE                      |               | Yes                                                          |         |      |      |
| FCC                     | Exclusion acc | Exclusion according to CFR 47, part 15, paragraph 15.103(c). |         |      |      |

<sup>&</sup>lt;sup>14</sup> Power consumption depends on firmware option and use case.

<sup>&</sup>lt;sup>15</sup> Power consumption is measured during acquisition and streaming of data at 5 Gbyte/s to PC.



# **Table 9 Data acquisition**

| Parameter                            | Condition              | Min | Typical | Max                | Unit    |
|--------------------------------------|------------------------|-----|---------|--------------------|---------|
| Re-arm time                          |                        |     |         | 20                 | ns      |
| Acquisition memory (Data FIFO)       | Shared by all channels |     | 8       |                    | Gbyte   |
| Record length                        |                        | 16  |         | 2 <sup>31</sup>    | samples |
| Pre-trigger <sup>16</sup>            |                        | 0   |         | 16 360             | samples |
| Length granularity, pre-trigger      |                        | 8   |         |                    | samples |
| Trigger delay <sup>17</sup>          |                        | 0   |         | 2 <sup>32</sup> -8 | samples |
| Length granularity,<br>trigger delay |                        | 8   |         |                    | samples |

## **Table 10 Data transfer**

| Parameter                                               | Value | Unit    |
|---------------------------------------------------------|-------|---------|
| Supported versions of data transfer standard PCIe       | Gen1  |         |
|                                                         | Gen2  |         |
|                                                         | Gen3  |         |
| Supported number of lanes                               | 1     |         |
|                                                         | 4     |         |
|                                                         | 8     |         |
| Data rate to CPU sustained with headers                 | 5     | GByte/s |
| Data rate to CPU sustained without headers              | 7     | GByte/s |
| Data rate to GPU sustained without headers              | 7     | GByte/s |
| Data rate peer-to-peer to GPU sustained without headers | 7     | GByte/s |

# **Table 11 Software support**

| Parameter                      | Value            |
|--------------------------------|------------------|
| Operating system <sup>18</sup> | Windows 10       |
|                                | Linux            |
| GUI                            | Digitizer Studio |
| Example code                   | C, Python        |
| API                            | C / C++          |

<sup>&</sup>lt;sup>16</sup> Pre-trigger is set by assigning the parameter "horizontal offset" a negative value

<sup>&</sup>lt;sup>17</sup> Trigger delay is set by assigning the parameter "horizontal offset" a positive value

<sup>&</sup>lt;sup>18</sup> See 15-1494 Operating system support for a detailed listing of supported distributions.



## 3 FEATURES FOR DATA FLOW CONTROL, SYNCHRONIZATION AND PROCESSING

The ADQ32 features an advanced machine for flow control, synchronization, and signal processing. The block diagrams are shown in Figure 1 and Figure 2. The features are described in the following tables.

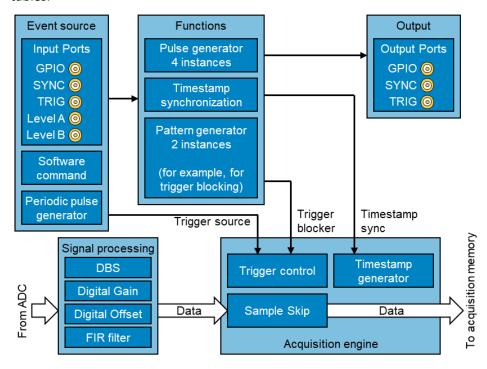



Figure 1 Flow control and synchronization block diagram.

**Table 12 Digital signal processing blocks** 

| Object type                            | Available selections              |
|----------------------------------------|-----------------------------------|
| Digital Signal Processing              | Digital Baseline Stabilizer (DBS) |
| Included signal processing in the data | Digital gain                      |
| path for enhanced signal quality.      | Digital offset                    |
|                                        | Digital FIR filter                |



## **Table 13 Flow control blocks**

| Object type                                 | Available selections                                  |  |  |
|---------------------------------------------|-------------------------------------------------------|--|--|
| Input ports                                 | Front panel TRIG                                      |  |  |
| Electrical connections to the ADQ32 for     | Front panel SYNC                                      |  |  |
| real-time operation (excluding the PCIe     | Front panel GPIO                                      |  |  |
| data interface) Used as event source.       | Front panel CLK (clock reference or clock input only) |  |  |
|                                             | Analog channel A                                      |  |  |
|                                             | Analog channel B                                      |  |  |
| Event sources                               | Software command                                      |  |  |
| Signals for real-time control of activities | External TRIG                                         |  |  |
| in the firmware of ADQ32.                   | External SYNC                                         |  |  |
|                                             | External GPIO                                         |  |  |
|                                             | Internal periodic event generator                     |  |  |
|                                             | Level analog channel A                                |  |  |
|                                             | Level analog channel B                                |  |  |
| Functions                                   | Pattern generator for timestamp synchronization       |  |  |
| Included operations for real-time control   | Pattern generator general purpose, 2 instances        |  |  |
| of activities in the firmware of ADQ32.     | Pulse generator, 4 instances                          |  |  |
| Output ports                                | Front panel TRIG                                      |  |  |
| Electrical connections to the ADQ32 for     | Front panel SYNC                                      |  |  |
| real-time operation (excluding the PCIe     | Front panel GPIO                                      |  |  |
| data interface).                            | Front panel CLK (clock reference output only)         |  |  |

**Table 14 Firmware functions for flow control** 

| Function              | Modes/selections | Event sources as stimuli          |  |  |
|-----------------------|------------------|-----------------------------------|--|--|
| Pattern generator for |                  | Software command                  |  |  |
| timestamp sync        | External TRIG    |                                   |  |  |
| Control the time of   | External SYNC    |                                   |  |  |
| the ADQ32.            |                  | Internal periodic event generator |  |  |
| Pulse generator       | Rising edge      | Software command                  |  |  |
| Control output pulse  | Falling edge     | External TRIG                     |  |  |
| shapes. Three         | Pulse length     | External SYNC                     |  |  |
| instances.            | Polarity         | Internal periodic event generator |  |  |
| Pattern generator     | Once             | Software command                  |  |  |
| general purpose       | Window           | External TRIG                     |  |  |
| For example, used for | Gate             | External SYNC                     |  |  |
| trigger blocking.     | Trigger counter  | Internal periodic event generator |  |  |



**Table 15 Firmware functions for acquisition** 

| Function                 | Modes                    | Event Sources as stimuli          |
|--------------------------|--------------------------|-----------------------------------|
| Trigger                  |                          | Software command                  |
| Initiate the acquisition |                          | External TRIG                     |
| of a data record.        |                          | External SYNC                     |
|                          |                          | Internal periodic event generator |
|                          |                          | Level analog channel A            |
|                          |                          | Level analog channel B            |
| Data acquisition         | Streaming with header    |                                   |
| modes                    | Streaming without header |                                   |
| Configurations for       |                          |                                   |
| sending digital data to  |                          |                                   |
| the host PC.             |                          |                                   |

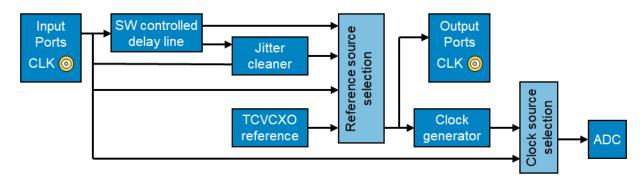



Figure 2 Clock generation block diagram.

**Table 16 Clock generation** 

| Function                                   | Modes                                          |  |
|--------------------------------------------|------------------------------------------------|--|
| Clock reference source                     | Internal                                       |  |
| Phase and frequency reference for the      | External                                       |  |
| clock system.                              | External with jitter cleaner and/or delay line |  |
| Sampling clock sources                     | Internal clock generator                       |  |
| Actual clock for taking the samples of the | Direct external clock                          |  |
| analog data.                               |                                                |  |
| Clock output                               | Selected clock reference                       |  |

## 4 CHANGING NUMBER OF CHANNEL

Changing from 2 channels to 1 channel is done by changing firmware image in the FPGA. Both firmware images are available on the ADQ32 digitizer. Use the software tool ADQAssist to change boot image. Changing firmware requires power cycle PC for the PCIe bus to enumerate.



#### 5 ABSLOUTE MAXIMUM RATINGS

**Table 17 Absolute maximum ratings** 

| Parameter                               | Condition                 | Min   | Max   | Unit |
|-----------------------------------------|---------------------------|-------|-------|------|
| Power supply to GND                     |                           | -0.4  | 14    | V    |
| Operating temperature                   |                           | 0     | 45    | °C   |
| Analog in to GND                        |                           | -1.75 | +1.75 | V    |
| TRIG to GND                             | 50-Ω mode                 | -2    | 5     | V    |
| SYNC to GND                             | 50-Ω mode                 | -2    | 5     | V    |
| TRIG to GND                             | 500-Ω mode                | -2    | 6     | V    |
| SYNC to GND                             | 500-Ω mode                | -2    | 6     | V    |
| CLK REF to GND AC amplitude             |                           |       | 5     | Vpp  |
| CLK REF to GND DC-level                 |                           | -5    | 5     | V    |
| GPIO to GND                             |                           | -1.5  | 5     | V    |
| FFC / FPC differential signal to GND    | Powered <sup>19</sup>     | -0.5  | 2.3   | V    |
|                                         | Not powered <sup>19</sup> | -0.5  | 0.5   | V    |
| FFC / FPC single-ended signal to GND 19 | Powered <sup>19</sup>     | -0.3  | 3.8   | V    |
|                                         | Not powered <sup>19</sup> | -0.3  | 0.5   | V    |

Exposure to conditions exceeding these ratings may reduce lifetime or permanently damage the device. The digitizer with PCIe format has a built-in fan to cool the device. The built-in temperature monitoring unit will protect the digitizer from overheating by temporarily shutting down parts of the device in an overheat situation.

The SMA connectors have an expected lifetime of 500 operations. For frequent connecting and disconnecting of cables, connector savers are recommended.

<sup>&</sup>lt;sup>19</sup> The absolute maximum ratings depend on whether the ADQ32 is powered or not. It is recommended to use the respective power rail in the FFC connector to power or enable the external drivers to avoid driving overvoltage into an unpowered digitizer. Use the 1.8 V rail for the differential signals and 3.3 V for the single-ended signals.



## **6 TYPICAL PERFORMANCE**

# 6.1 Frequency response

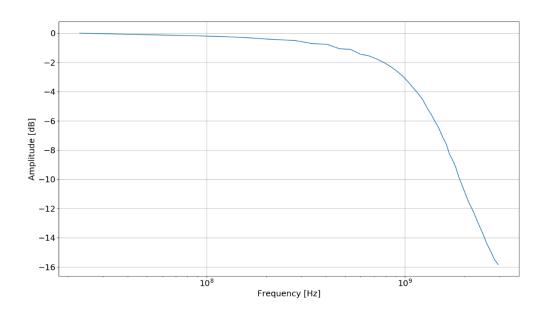



Figure 3 Frequency response, typical performance.

# 6.2 FFT

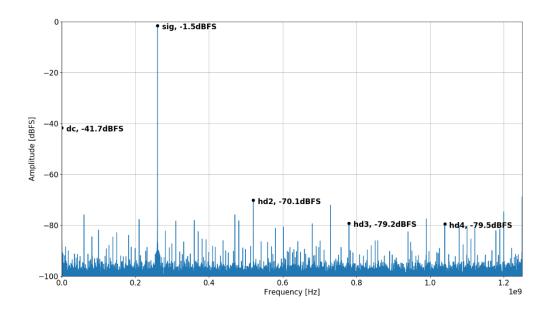



Figure 4 FFT typical performance 2.5 GSPS.



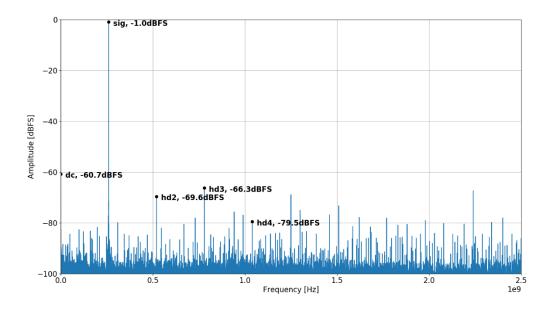



Figure 5 FFT typical performance at 5 GSPS

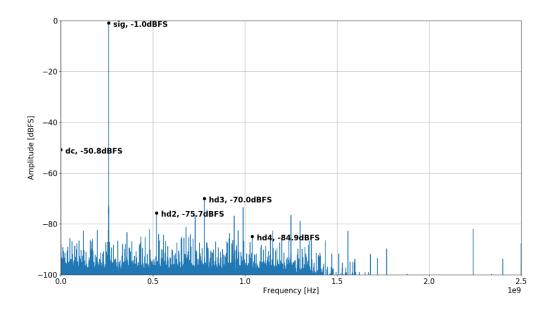



Figure 6 FFT typical performance 5 GSPS, using digital FIR filter.



# 7 TYPICAL PERFORMANCE BANDWIDTH OPTION -BW2G5

# 7.1 Frequency response

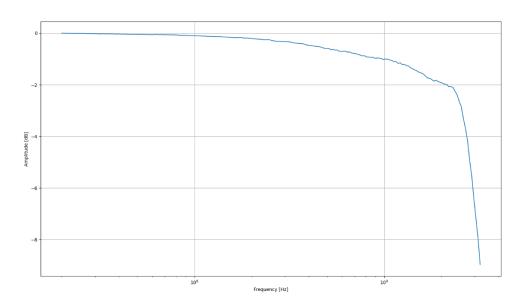



Figure 7 Frequency response, analog bandwidth option -BW2G5.

# 7.2 FFT

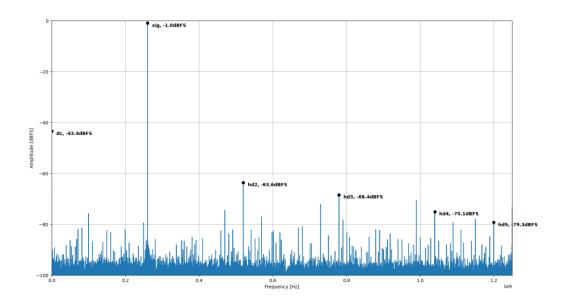



Figure 8 FFT typical performance 2.5 GSPS, analog bandwidth option -BW2G5.



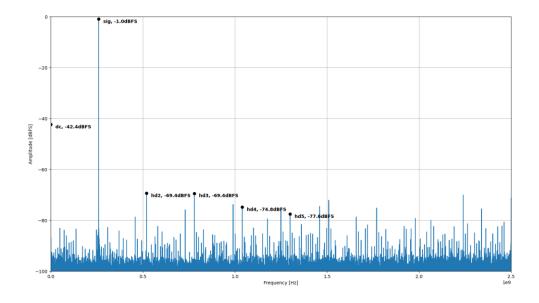



Figure 9 FFT typical performance at 5 GSPS, analog bandwidth option -BW2G5

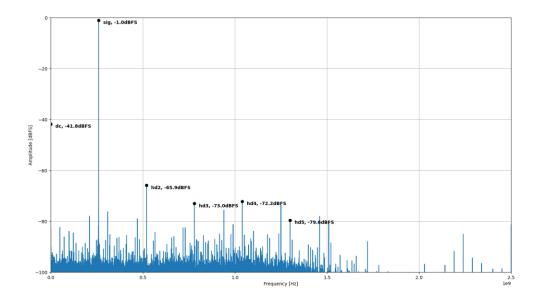



Figure 10 FFT typical performance 5 GSPS, using digital FIR filter, analog bandwidth option -BW2G5



#### 8 BLOCK DIAGRAM

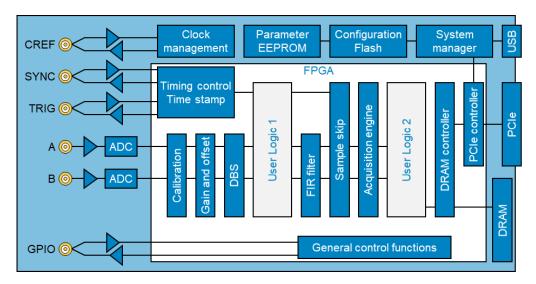



Figure 11 Block diagram.

Figure 11 shows a block diagram of ADQ32. The boxes "User Logic" are open for custom real-signal processing thought the firmware development kit (purchased separately).

# 9 HOST PC INTERFACE PCIE

The ADQ32-PCIe is powered from the power supply of the PC via a PCI Express 6-pin (2x3) auxiliary power supply connector. The connection in the cable should be as in Figure 12. A suitable connector is for example Molex 45559-0002. It is important that the auxiliary power supply is turned on immediately when the PC starts. Otherwise, the digitizer will not be recognized on the PCI Express bus.

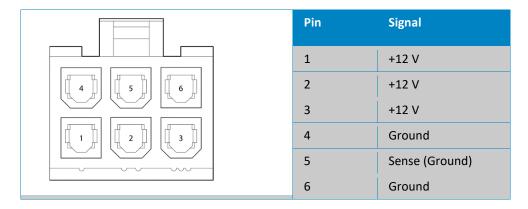



Figure 12 Power supply connection. Cable connector, looking into the connector end.



#### 10 GPIO EXPANSION

The FCP connector allows direct access to the FPGA for building custom expansion boards. The FCP connector requires custom firmware and is accessible through the FPGA development kit. The ADQ32 user guide document number 21-2539 contains a description of connector.

Note that this connector is connected directly to the FPGA. Damage caused by custom hardware failure is not covered by warranty.

Contact Teledyne SP Devices' sales representative for more information.

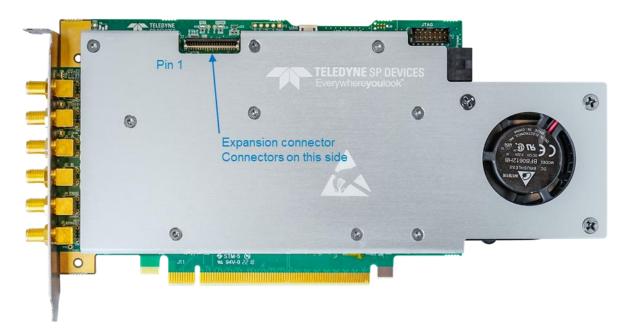



Figure 13 ADQ32 photo showing GPIO expansion connection on the top side.

### 11 FIRMWARE OPTIONS

### 11.1 FWDAQ

The ADQ32 is delivered with data acquisition firmware FWDAQ for 2 channels and 1 channel operations. In addition, application specific firmware options are available.

The order code **-FWDAQ**, included with the hardware.

#### 11.2 License for PDRX

The FWDAQ firmware includes function for channel combination. This can be used together with an external dual gain amplifier to improve dynamic range of pulse data. The feature is activated through the License for PDRX. Related product is the ADQ32-PDRX, which implements the dual-gain amplifier on the ADQ32-PDRX.

Order code -LICPDRX.



#### **11.3 FWATD**

Averaging firmware. The firmware implements a sum of records. The accumulation is seamless. The firmware also includes threshold function for noise suppression. It is possible to combine the PDRX function with the accumulation function for increased dynamic range in pulse detection.

Order code -FWATD.

## 11.4 FWOCT

The FWOCT implements k-space re-mapping in the FPGA. Analog input channel is the OCT signal and analog channel B is used for sampling the k-clock signal. The OCT signal is then re-sampled on the rising edges of the k-clock signal.

For availability, please contact Teledyne SP Devices.

## 12 MECHANICAL DRAWING

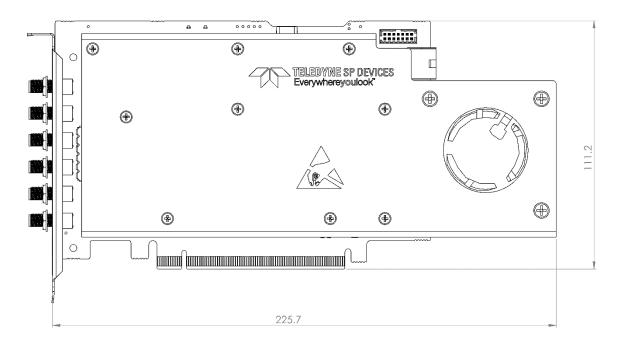



Figure 14 Mechanical drawing.



### **Important Information**

Teledyne Signal Processing Devices Sweden AB (Teledyne SP Devices) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Teledyne SP Devices' general terms and conditions supplied at the time of order acknowledgment.

Teledyne SP Devices warrants that each product will be free of defects in materials and workmanship and conform to specifications set forth in published data sheets, for a period of three (3) years. The warranty commences on the date the product is shipped by Teledyne SP Devices. Teledyne SP Devices' sole liability and responsibility under this warranty is to repair or replace any product which is returned to it by Buyer and which Teledyne SP Devices determines does not conform to the warranty. Product returned to Teledyne SP Devices for warranty service will be shipped to Teledyne SP Devices at Buyer's expense and will be returned to Buyer at Teledyne SP Devices' expense. Teledyne SP Devices will have no obligation under this warranty for any products which (i) has been improperly installed; (ii) has been used other than as recommended in Teledyne SP Devices' installation or operation instructions or specifications; or (iii) has been repaired, altered or modified by entities other than Teledyne SP Devices. The warranty of replacement products shall terminate with the warranty of the product. Buyer shall not return any products for any reason without the prior written authorization of Teledyne SP Devices.

In no event shall Teledyne SP Devices be liable for any damages arising out of or related to this document or the information contained in it.

TELEDYNE SP DEVICES' EXPRESS WARRANTY TO BUYER CONSTITUTES TELEDYNE SP DEVICES' SOLE LIABILITY AND THE BUYER'S SOLE REMEDY WITH RESPECT TO THE PRODUCTS AND IS IN LIEU OF ALL OTHER WARRANTIES, LIABILITIES AND REMEDIES. EXCEPT AS THUS PROVIDED, TELEDYNE SP DEVICES DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT.

TELEDYNE SP DEVICES DOES NOT INDEMNIFY, NOR HOLD THE BUYER HARMLESS, AGAINST ANY LIABILITIES, LOSSES, DAMAGES AND EXPENSES (INCLUDING ATTORNEY'S FEES) RELATING TO ANY CLAIMS WHATSOEVER. IN NO EVENT SHALL TELEDYNE SP DEVICES BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFIT, LOST DATA AND THE LIKE, DUE TO ANY CAUSE WHATSOEVER. NO SUIT OR ACTION SHALL BE BROUGHT AGAINST TELEDYNE SP DEVICES MORE THAN ONE YEAR AFTER THE RELATED CAUSE OF ACTION HAS ACCRUED. IN NO EVENT SHALL THE ACCRUED TOTAL LIABILITY OF TELEDYNE SP DEVICES FROM ANY LAWSUIT, CLAIM, WARRANTY OR INDEMNITY EXCEED THE AGGREGATE SUM PAID TO SP BY BUYER UNDER THE ORDER THAT GIVES RISE TO SUCH LAWSUIT, CLAIM, WARRANTY OR INDEMNITY.

# **Worldwide Sales and Technical Support**

www.spdevices.com

# **Teledyne SP Devices Corporate Headquarters**

Teknikringen 8D SE-583 30 Linköping

Sweden

Phone: +46 (0)13 465 0600 Fax: +46 (0)13 991 3044 Email: info@spdevices.com

Copyright © 2023 Teledyne Signal Processing Devices Sweden AB. All rights reserved, including those to reproduce this publication or parts thereof in any form without permission in writing from Teledyne SP Devices.