www.benstone.com

impaq Elite

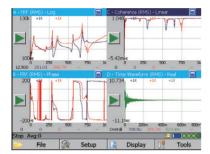
4 channel dynamic signal analyzer

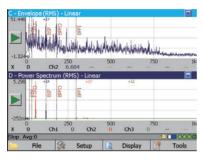
BORN FOR IN-FIELD TESTING

Impaq Elite is a portable 4 channel real-time analyzer that is built for advanced noise and vibration measurements in the field. Manufactured with a ruggedized housing by a dual injection molding process and protective sealing to provide an IP 65 rating for measurement in harsh environments. Impaq Elite is equipped with a large 6.4-inch color VGA (640 x 480 high resolution) touch screen. The combination of Microsoft's powerful WinCE operating system and touch screen operation provides a user friendly and intuitive interface. Impaq Elite acquires measurement signal with precision 24 bit sigma delta AD converters to provide a high dynamic range, up to 40 kHz maximum bandwidth. Impaq Elite has an 800 MHz CPU for running the Windows CE system and high-speed DSP chip TI TMS320C6713B for performing signal analysis at extremely fast real-time rates.

MODULARIZED APPLICATION SOFTWARE

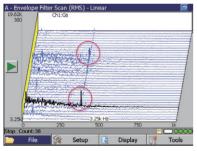
Because every person may have different testing requirements, Benstone Instruments has developed modular software for specific applications. It is very easy to install the modular software to an existing Impaq Elite or to download an updated version from our website. The following application programs are available from Benstone Instruments.




FFT SPECTRUM ANALYSIS

Impaq Elite's powerful FFT program allows you to conduct cross-channel analysis such as FRF, coherence, and cross power spectrum required for modal, ODS testing or sound intensity measurements. Also supported is continuous spectral measurements and waterfall display, for proper analysis of varying speed machines.


- · General vibration analysis
- Modal testing
- Sound intensity measurement
- · Operational deflection shape measurement
- · Bearing diagnosis


Display the amplitude and phase of FRF's, Coherence and time waveform

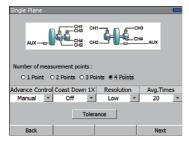
Display envelope spectrum with bearing fault frequencies

Measure spectral map and display data in 3D waterfall plots and intensity plots

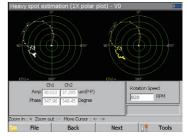
Envelope filter scanning mode shows the envelope spectrums from different filter settings on a 3D waterfall plot for finding the best filter setting and confirming bearing damage. The example to the left shows that the bearing fault frequency can be observed clearly when the center frequency of envelope filter is set as 3.25 kHz or 12.5 kHz.

According to ISO 7626-1, impaq Elite can show bump test results with Accelerance, Mobility, Compliance and Stiffness functions for investigating the dynamic stiffness of the structure.

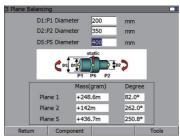
ROTOR BALANCING



The Impaq Elite with the (optional) balancing software package can balance your rotating machines in the field with industry leading balancing *techniques* like; single plane, dual plane, overhung dual plane, 3 plane, 4 plane and 3 weights balancing. This advanced balancing software makes it very simple to balance machines in-field with a very high level of accuracy. Now with *multiple-point balancing*, vibration in *BOTH* horizontal and vertical directions are minimized at the same time. By enabling coast-down measurements for 1X vibration, the heavy spot is identified correctly with only one measurement, saving you time, money and increasing safety. This technique prevents the user from danger by putting the trial weights in the wrong place and shortens the time required to balance. Other features / functions are:

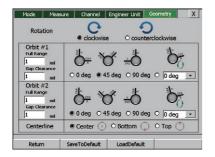

- · Multi-point balancing
- · Component calculation
- · Drill depth calculation
- Allowable residual unbalance calculated from the ISO 1940 standard
- · Unequal radii calculation
- Decoupled balancing (couple + static)
- Review historical vibration data on a polar plot.
- · Review historical balancing data on a polar plot
- Heavy spot estimation with one shot measurement.
- Redo a previous balancing job with saved balancing factors.
- Continue an unfinished balancing job from a saved file

Select the desired balancing function from the main display

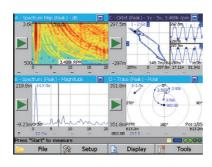

Select up to 4 measurement points for single plane balancing

Find out the heavy spot location from a single coast-down measurement of 1X vibration

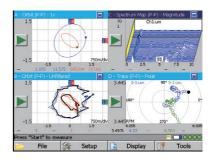
Component calculation for discrete weight locations



Conversion of dual plane balancing into static and couple balancing

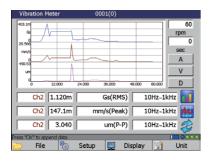


COMPUTED ORDER TRACKING

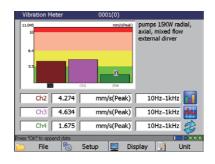

The computed order tracking program is designed to analyze the sound or vibration signals of a varying speed machines. Typical applications for this software module are NVH (Noise, Vibration, Harshness) testing of vehicles or advanced vibration analysis of turbine machines. Calculation of the order spectrum, order traces, filtered or unfiltered orbits, gap reading and centerline of a shaft accurately during a start-up or coast-down process. The impaq Elite's order tracking algorithm performs digital re-sampling of the measured signal for ensuring data accuracy. The order spectrum data can be displayed on a waterfall plot or intensity map. Cut a slice or a trace of data from the waterfall plot and then examine the individual traces. As shown in the figure below, the user can enter geometric position(s) of the vibration sensors to create a plot to display orbit and shaft centerline motion, which relates to the realistic behavior of a turbine machine.

Setup the sensor locations and rotating direction for orbit, polar and centerline measurements

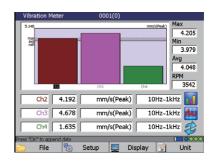
Display order spectral map, orbit and waveform, order spectrum and order trace



Display filtered orbit, unfiltered orbit, waterfall plot and polar plot for 1X vibration

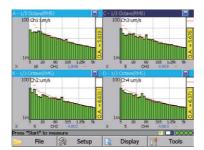


VIBRATION METER


The overall vibration level is a basic parameter for determining a machine's operational condition. By simulating the operation of an analog meter, impaq Elite's vibration meter program performs time domain integration, filtering and root mean square (RMS) calculations for accurate measurements of vibration levels. One to Four channels can be measured at the same time, displaying the results to a trend chart, bar chart, or you may record the data continuously to a file. Easily check vibration severity with the built-in ISO 10816-3 standard. The user may select different filter settings, or create a user defined filter for special measurements.

Measure and display overall level of acceleration, velocity and displcement in trend plot

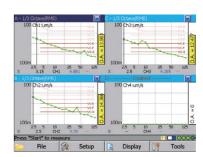
Display bar plot with severity clor in background (ISO 10816-3 or user defined)



Display vibration velocity in bar plot for multi channel measurement

OCTAVE SPECTRUM ANALYSIS

The octave analysis program utilizes real-time digital filtering technology to generate octave, 1/3 octave or 1/12 octave spectrum. Conforming to the IEC 61260 & IEC 61672 standards, the octave program is best suited for acoustic or vibration measurements in the field. For vibration applications, the octave program can perform measurements with user-defined weightings. One example is that impag Elite can perform measurements with the special weighting of ISO 6954, ISO8041, ISO2631 and more. When measuring floor vibration, impaq Elite can display the VC curves on the spectrum, providing real-time evaluation of the vibration severity in the field.

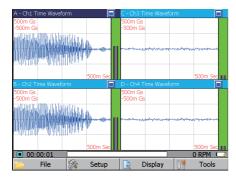

Real-time 4 channel measurements of Octave, Continuous measurements with waterfall 1/3 Octave and 1/12 Octave spectrum.

	File	98	Setup	Dis	play	Y.	Tools
	Start" to me	asure			3.0	=	1000
X	5 5	20	CH1	315 3.946	1.25 10	k	Sk
		Ш		шшп			
	HIT	ᆉ		ЩЩ		ШΠ	щу
Щ.			┍┍╇		щ	ш	
		TH	```	+++++	-	-	
	HLIII					-	
			$\perp \mid \perp \mid \perp \mid \perp$				
		Щ					
	╽		┸┸┸				
	//Th	75	┍┸ ┰┸╃┸┸	ЩЩ	шЦ	Ш	ш
10			[┷] ┸┸┸┸		#	Щ	ш
						_	
10	Ch1:	um/s					O.A. = 5.

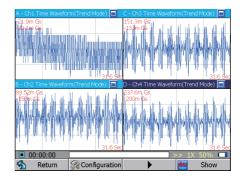
or intensity map display.

Measure Channel Engineer Unit							
	Sensor Type	Sensor Unit(SU)		Sensitivi mv/SU	ty	Display Unit(DU	
Ch1	Acceleratio -	Gs	•	10000		um/s	•
Ch2	Acceleratio -	Gs	*	10000		um/s	*
Ch3	Acceleratio	Gs	•	10000		um/s	•
Ch4	Acceleratio	Gs	٠	10000		um/s	•
	DB Ref(DU)	Int./Diff.		Weightin	g	User Def	ine
Ch1	1	int*1		No	•	um/s	
Ch2	1	int*1		2631(We)	^	um/s	
Ch3	1	int*1		2631(Wf) 2631(Wj)		um/s	
Ch4	1	int*1		2631(Wk)		um/s	
	Unit Definition 6954(Wa) 6954(Wv)						
Re	Return Assign Single User Define						

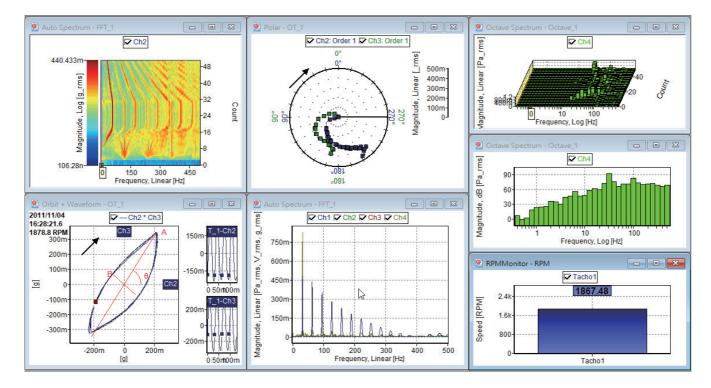
Selectable weighting functions, like A, C, ISO 2631, 6954, 8041 and user defined.



Display VC (Vibration Criteria) curves on 1/3 octave for quick evaluation of floor vibration.



RAW DATA RECORDER


The recorder program directly records raw time data to the built-in compact flash card. For example, a 1 gigabyte file will contain approximately three hours of continuous data with four channels recording at 2 kHz bandwidth. Post processing of Raw Data Recorder files such as FFT, Order Tracking or Octave Analysis from the playback mode can be done with Novian Computer based software.

Record raw data with real-time waveform or spectrum view.

Playback of the recorded waveform after data recording.

Computer based Novian software can be used to investigate the test data. Conduct FFT, Order Tracking or Octave spectrum analysis with the playback mode of PC software. Create Microsoft Word Test reports, export to a variety of formats, ie. XML, UFF, etc...

Novian software can be used to investigate the test data from other software modules.

SPECIFICATIONS : www.benstone.com

SPECIFICATIONS:			www.benstone.com
Hardware Feature	Technical Specifications	Feature for Rotor Balancing	
Operating system Windows CE™		Rotor type for balancing	Single plane, dual plane, 3 plane, 4 plane,
Number of input channels	4 analog channels and 1 aux channel		overhung dual plane, 3 weights balancing
Connector of input channels	Analog: BNC and 7 pin Lemo, Aux: 6 pin Lemo	Balancing speed	60 rpm to 300,000 rpm
Channel coupling	AC, DC, IEPE, 0V microphone	Order resolution	Low, normal, high, 0.03, 0.015, 0.008, and 0.004
Aux channel	TTL or non-TTL in (external trigger or tacho)	Average number	10, 20, 50 and 100
DSP processor	TI TMS320C6713B	Balancing grade	Built-in ISO 1940 standard or user defined
External memory	Compact flash card	Tools	1X coast down order trace, decoupled balancing
Battery	Li-Po 7.4V 5800 mAhr, rechargeable	_	(static and couple), unequal radii, component
PC communication interface	USB 1.1, mini B type USB connector	_	calculation, drill depth, vibration history, balancing
LCD display	640X480 6.4 inch TFT color touch screen		history and recalculation of balancing coefficients.
Operating temperature	-10 deg C to + 45 deg C		
Safety certifications	CE	Feature for Octave Analysis	
Sealing / Ruggedness	IP 65	Octave spectrum	Full octave, 1/3 octave and 1/12 octave
Housing material	Dual material: hard ABS plastic and soft TPR	Maximum band with 4 channel on	Full octave: 32k Hz, 1/3 octave: 20kHz,
Weight	4.5 lb (2.0 kg)		1/12 octave: 5kHz
Input signal range	±5Volt, ±20Volt	Maximum band with 1 channel on	Full octave: 32kHz, 1/3 octave: 40kHz,
Dynamic range	>130 dB (measured from spectrum)	_	1/12 octave: 20kHz
A/D converter	24 bit sigma-delta A/D converter	Integration time (second)	1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2, 1, 2, 4
Frequency range	40KHZ	Detection method	Fast, slow, impulse, linear
Input impedance	1M Ohm	Trigger sources	Off, external, input channels, manual
		Weighting	A, C, flat ISO 2631, 6954, 8041 and user defined.
Feature for FFT Analysis		Feature for Raw Data Recorder	
FFT real time rate	40 kHZ, dual channel @12800 lines	Recorded data	Raw time data and TTL tacho signal
FFT resolution	100-12,800 lines	Monitor display	Waveform, continuous waveform or spectrum
Spectral map	3D waterfall or intensity plots for continuous spectrum		(resolution 100, 200 or 400 lines)
	measurements	Storage media	Compact flash card
Time windows	Hanning, hamming, flattop, rectangular, force,	Data review	Playback block by block, fast forward or rewind
	exponential	Maximum file size	1 Gigabyte each
Analysis functions	Spectrum, power spectrum, cross power spectrum,FRF,	Maximum sampling rate	51.2 kHz for 1 channel, 25.6kHz for 2 channels
	time waveform, envelope spectrum, orbit		and 12.9 kHz for 4 channels

FFT real time rate	40 kmz, dual charmel @ 12600 lines
FFT resolution	100-12,800 lines
Spectral map	3D waterfall or intensity plots for continuous spectrum
	measurements
Time windows	Hanning, hamming, flattop, rectangular, force,
	exponential
Analysis functions	Spectrum, power spectrum, cross power spectrum,FRF,
	time waveform, envelope spectrum, orbit,
	coherence and PSD
Engineering units	Automatic units transform with pre-defined table
Zoom FFT	Yes
Average	Linear, exponential, time, peak hold
Trigger	External, input channel triggering, pre/ post triggering
Cursor	Single, harmonic, harmonic+ single, peak, band cursor
	mark cursor, side band cursor
Envelope filters	500~2kHz, 1k~2.5kHz, 2k~5kHz, 5k~10kHz or user defined.

Feature for Vibration Meter				
Types of vibration	Acceleration, velocity and displacement			
Types of detection	RMS, peak, peak to peak, true peak and quest factor			
Filters	2Hz-1kHz, 5Hz-1kHz, 10Hz-1kHz, 2Hz HP,			
	5Hz HP, 10Hz HP			
Display	trend chart (vibration vs. time or rpm) or bar chart.			
Severity	ISO 10816-3 or user defined			

Feature for Raw Data Recorder			
Recorded data	Raw time data and TTL tacho signal		
Monitor display	Waveform, continuous waveform or spectrum		
	(resolution 100, 200 or 400 lines)		
Storage media	Compact flash card		
Data review	Playback block by block, fast forward or rewind		
Maximum file size	1 Gigabyte each		
Maximum sampling rate	51.2 kHz for 1 channel, 25.6kHz for 2 channels		
	and 12.8 kHz for 4 channels		
Data analysis	Raw data files can be replayed by Novian software		
	with FFT, octave or order tracking analysis.		

Feature for Computed Order Track	ang		
Measurement types	Order trace, order spectrum, spectrum map, RPM		
	profile, orbit, gap and shaft centerline.		
Measurement control	Manual, time step, rpm step or both time and rpm step.		
Rotation speed	6 rpm to 480,000 rpm		
Order resolution	0.5, 0.25, 0.125 and 0.0624		
Max. number of traces	User selectable 16 orders plus overall traces.		
Max. order	800 order		
Waterfall display	Adjustable waterfall plot and intensity plot		
Waterfall cursor	RPM cursor and Order cursor		
Y-Axis of order traces	Linear, log, dB, real, image, phase, number and		
	polar plot.		
Geometry setting	Selectable angular location of sensors		

BENSTONE INSTRUMENTS, INC

32905 Northland Court-St. Paul, MN55045

TEL: 651-257-6500 Website: www.benstone.com